Checkpoint: GPU Ray Tracer with Optimized Parallel BVHs

Work Done So Far

We've finished parallelizing C++ implementation of ray tracing on smallpt to work on GPU and
finished debugging. We’ve went through Karras’s paper on Bounding Volume Hierarchy
(BVH) tree construction on GPU and ready to start implementing at this point.

Comparing Current Work & Proposal

We are planning to finish Karras’s both papers, one on parallel BVH construction and one on
BVH optimization eventually, and we think we can keep up with the schedule. Looking for a
proper C++ ray tracing library that can be ported to CUDA cost us a considerable amount of
time, and since that’s already done, we are relatively comfortable with adding code/data
structures to GPU side now.

What to Show at Parallelism Competition

We are planning to show several graphs on runtime comparisons of ray tracer implementation
on CPU, on GPU, on GPU with BVH, on GPU with optimized BVH.

Preliminary Results
We have a graph of CPU ray tracer vs. GPU ray tracer performance at this point:

8 40 200 1000 5000

smallpt (CPU Raytracer with OpenMP) 13 63 300 1500 7440

Our GPU Raytracer 28.3596 29.1819 38.9812 132.575 643.883
CPU vs. GPU

8000

7000 /
6000 /

5000
: /
k-]
g 4000 ——smallpt (CPU Raytracer with
] / OpenMP)
3000 / == ur GPU Raytracer

n o
//—/

8 40 200 1000 5000

Number of samples per pixel



http://www.kevinbeason.com/smallpt/
http://dl.acm.org/citation.cfm?id=2383801

Issues

As mentioned earlier, we spent vast amount of time trying to find a ray tracing library that we
can port to CUDA. We've tried CMU 15-462’s ray tracing project starter code, Don Cross’s ray
tracer, and finally smallpt. The previous two both failed because they use too many external
libraries, and we weren’t able to find the CUDA alternatives for them. Also, compilation using
CMake also took us a lot of time.


http://www.cosinekitty.com/raytrace/chapter05_cpp_code.html
http://www.cosinekitty.com/raytrace/chapter05_cpp_code.html
http://www.kevinbeason.com/smallpt/

